Measuring the Blast Output of Aluminized Explosive Charges in a Semi-Confined Environment

FJ Mostert¹ and CE du Toit²

¹ CSIR Defence Peace Safety & Security, PO Box 395, Pretoria 0001, South Africa, Tel: +27 12 8414049, email: fmostert@csir.co.za
² RHEINMETALL DENEL MUNITION, Western Cape, PO Box 187, Somerset West, 7129, South Africa, Tel: +27 21 8502075, email:christo.dutoit@rheinmetalldenelmunition.com

our future through science

Content

- Introduction
- The VLIP Apparatus and the Experimental Layout
- Explosive charges
- Results and discussion
- Summary and Conclusions

Introduction

- Blast output of enhanced blast charges normally quantified by pressure measurement in confined enclosures
- Vertically Launched Impulse Plate (VLIP) used for landmine testing previously
- VLIP method not suited for enhanced blast charges

Introduction and Objectives

- Initial objective to research the effect of up to 3kg explosive charges
- Simulations showed that a very heavy structure is required for 3kg charges that was not affordable
- Requirement scaled down to 0-1kg charges
- Experience with pressure sensors in the fireball limited
- Decision made to design a semi-confined VLIP apparatus

Design of the semi-confined VLIP

- Mild steel cylinder used 1.5m length L/D =1
- Hoops of mild steel used to strengthen the cylinder at approximately 100mm spacing intervals
- Cylinder suspended 300mm off the ground for venting
- Mast rigidly fixed on lid to monitor motion via camera
- Measuring ports around the circumference of the cylinder

Design of the semi-confined VLIP

- Fixtures with heavy threads in ports for 'secondary' measurements
- Two PCB137 over-pressure sensors used in opposite ports
- PCB 109B sensor used initially switched to Kulite 375-M for reflected (face-on) pressure measurement
- Momentum gauge with a laser velocity measurement system employed

Design of the semi-confined VLIP

• Sensors and momentum gauges fixed in the VLIP apparatus

Experimental Procedure (Photron Camera)

• 10000 fps

Experimental Procedure

Distance-time plot from the digital video recording

Experimental Procedure Momentum Gauge

• Typical gauge recording

our future through science

Explosive Charges

- Two test series performed with RDM explosive charges
- Charges RDX based cast explosives, containing between 0-30%aluminium
- Charges hung from the lid in a wire cradle center to the VLIP apparatus
- Charges detonated in the downward direction

Explosive Charges

• 900g-1kg and 250-300g results for aluminised charges

Series	Designation	Size	% Al	Density (g/cc)
Series 1	RXHT8403	Small	0	1.55-1.57
		Large		1.56-1.57
	RAHT6401	Small	20	1.65-1.67
		Large		1.67-1.68
	RAHT5401	Small	30	1.71-1.73
		Large		1.72-1.73
Series 2	RXHT8405	Small	0	1.57-1.58
		Large		1.57-1.59
	RAHT6901	Small	15	1.62-1.64
		Large		1.62-1.64
	RAHT6402	Small	20	1.66-1.67
		Large		1.65-1.67
	RAHT5901	Small	25	1.69-1.70
		Large		1.68-1.69

our future through science

Slide 14

• Overpressure simulations and sensor recordings

• Reflected pressure recording

• Mass weighted impulse

Conclusions

- Semi-confined VLIP can be used as a ranking tool with sufficient resolution (average 4% variation between similar firings)
- Afterburning from aluminised charges observed and identified from the results
- Pressure sensor results consistent but need to be improved if to be useful for quantification of blast output
- Momentum gauge results consistent with VLIP results
- For the type of aluminised charges used :
 - Smaller charges (300g) show little improvement with increasing aluminium content
 - Larger charger (900g) exhibit significant afterburning behaviour
 - Mass weighted impulse not significantly better

www.csir.co.za

